Recognition of skin melanoma through dermoscopic image analysis
نویسندگان
چکیده
Melanoma skin cancer diagnosis can be challenging due to the similarities of the early stage symptoms with regular moles. Standardized visual parameters can be determined and characterized to suspect a melanoma cancer type. The automation of this diagnosis could have an impact in the medical field by providing a tool to support the specialists with high accuracy. The objective of this study is to develop an algorithm trained to distinguish a highly probable melanoma from a non-dangerous mole by the segmentation and classification of dermoscopic mole images. We evaluate our approach on the dataset provided by the International Skin Imaging Collaboration used in the International Challenge Skin Lesion Analysis Towards Melanoma Detection. For the segmentation task, we apply a preprocessing algorithm and use Otsu’s thresholding in the best performing color space; the average Jaccard Index in the test dataset is 70.05%. For the subsequent classification stage, we use joint histograms in the YCbCr color space, a RBF Gaussian SVM trained with five features concerning circularity and irregularity of the segmented lesion, and the Gray Level Co-occurrence matrix features for texture analysis. These features are combined to obtain an Average Classification Accuracy of 63.3% in the test dataset.
منابع مشابه
Pattern Recognition in Macroscopic and Dermoscopic Images for Skin Lesion Diagnosis
Pattern recognition in macroscopic and dermoscopic images is a challenging task in skin lesion diagnosis. The search for better performing classification has been a relevant issue for pattern recognition in images. Hence, this work was particularly focused on skin lesion pattern recognition, especially in macroscopic and dermoscopic images. For the pattern recognition in macroscopic images, a c...
متن کاملSkin Lesion Analysis towards Melanoma Detection Using Deep Learning Network
Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is v...
متن کاملSkin Lesion Analysis toward Melanoma Detection: A Challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC)
In this article, we describe the design and implementation of a publicly accessible dermatology image analysis benchmark challenge. The goal of the challenge is to support research and development of algorithms for automated diagnosis of melanoma, a lethal form of skin cancer, from dermoscopic images. The challenge was divided into subchallenges for each task involved in image analysis, includi...
متن کاملClassification of Dermoscopic Images for the Detection of Melanoma
Disease classification is the crucial part of the medical diagnosis. Automated classification methodologies are highly recommended over manual methods so as to avoid the intra and inter observational errors. Image processing plays a vital role in making classification simple and accurate. Early detection of melanoma is very much essential as it is dangerous form of the skin cancer. By capturing...
متن کاملA New Algorithm for Skin Lesion Border Detection in Dermoscopy Images
Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017